2024/08/12 2

회귀 모델 평가 지표

회귀 모델의 성능을 평가하는 데 사용되는 주요 지표들에 대해 자세히 알아보겠습니다. 이 지표들은 모델의 예측이 실제 값과 얼마나 가까운지, 그리고 모델이 데이터의 변동성을 얼마나 잘 설명하는지를 측정합니다.1. 평균 절대 오차 (Mean Absolute Error, MAE)MAE는 예측값과 실제값 차이의 절대값 평균을 계산합니다.수식:여기서:n은 데이터 포인트의 수y_i는 실제값ŷ_i는 예측값특징:해석이 직관적이고 쉽습니다.오차의 단위가 원래 변수의 단위와 동일합니다.이상치에 비교적 덜 민감합니다.사용 사례:예측 오차의 평균적인 크기를 쉽게 이해해야 할 때이상치의 영향을 줄이고 싶을 때2. 평균 제곱 오차 (Mean Squared Error, MSE)MSE는 예측값과 실제값 차이의 제곱의 평균을 계산합니..

머신러닝 라이프사이클: 인공지능 프로젝트의 전체 과정 이해하기

01) 머신러닝이란?Tom Mitchell(1998)의 정의에 따르면, 머신러닝은 "경험 E로부터 학습하여 작업 T에 대한 성능 P를 향상시키는 시스템"입니다. 즉, 데이터(경험)를 통해 특정 작업의 성능을 스스로 개선하는 알고리즘을 연구하는 학문이라고 할 수 있습니다. 1.1 머신러닝의 적용사례현재 머신러닝은 다양한 분야에서 활용이 되는데요,컴퓨터 비전문자 인식MLP음성 인식 등에 사용이 됩니다.1.2 머신러닝의 종류크게 3가지 유형으로 나뉩니다.지도학습 : 레이블이 존재하는 데이터(정답)로 학습비지도 학습 : 레이블이 없는 데이터로 패턴을 찾음강화학습 : 행동에 대한 보상을 통해 학습02) 머신러닝 라이프 사이클머신러닝 라이프사이클은 머신러닝 모델을 개발, 배포, 유지보수하는 일련의 단계들을 정의하는..